FixMatch

2 Posts

Graphs and data related to semi-supervised learning
FixMatch

All Examples Are Not Equal

Semi-supervised learning — a set of training techniques that use a small number of labeled examples and a large number of unlabeled examples — typically treats all unlabeled examples the same way. But some examples are more useful for learning than others.
FixMatch example
FixMatch

Less Labels, More Learning

In small data settings where labels are scarce, semi-supervised learning can train models by using a small number of labeled examples and a larger set of unlabeled examples. A new method outperforms earlier techniques.

Subscribe to The Batch

Stay updated with weekly AI News and Insights delivered to your inbox