Blog

How We Won the First Data-Centric AI Competition: Synaptic-AnN

October 18th, 2021 | Community

In this blog post, Synaptic-AnN, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

How We Won the First Data-Centric AI Competition: Innotescus

October 18th, 2021 | Community

In this blog post, Innotescus, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

How We Won the First Data-Centric AI Competition: KAIST – AIPRLab

October 18th, 2021 | Community

In this blog post, KAIST-AIPRLab, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

How I Won the First Data-centric AI Competition: Johnson Kuan

October 18th, 2021 | Community

In this blog post, Johnson Kuan, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

How I Won the First Data-centric AI Competition: Mohammad Motamedi

October 18th, 2021 | Community

In this blog post, Mohammad Motamedi, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

How I Won the First Data-centric AI Competition: Divakar Roy

October 18th, 2021 | Community

In this blog post, Divakar Roy, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

How I Won the First Data-centric AI Competition: Pierre-Louis Bescond

October 18th, 2021 | Community

In this blog post, Pierre-Louis Bescond, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

How We Won the First Data-centric AI Competition: GoDataDriven

October 18th, 2021 | Community

In this blog post, GoDataDriven, one of the winners of the Data-Centric AI Competition, describes techniques and strategies that led to victory. Participants received a fixed model architecture and a dataset of 1,500 handwritten Roman numerals. Their task was to optimize model performance solely by improving the dataset and dividing it into training and validation sets. The dataset size was capped at 10,000.

Read More

Expanding Access to Education

September 22nd, 2021 | Community

At DeepLearning.AI, we specialize in building high-quality learning experiences for people interested in machine learning and artificial intelligence. We aim to give everyone with an internet connection access to world-class education, and each time we launch a new course that delivers value for thousands of learners, we move one step closer to that goal. 

Read More

My Journey into AI – learning resources recommended by the speakers

April 14th, 2021 | Community

On April 13, DeepLearning.AI and Omdena assembled a panel of machine learning practitioners who shared their first-hand experience of going from non-traditional starting points to building a career in AI. For any aspiring machine learning engineers who missed the event, here’s a few of the speakers’ tips that we hope you’ll find helpful:

Read More

Working AI: Stoking GPU Clusters With Swetha Mandava

January 20th, 2021 | Community

Title: Senior Deep Learning Engineer, Nvidia Location: Santa Clara, California Education: Bachelor of Technology, Electronics and Communication Engineering, Manipal University; MS, Electrical and Computer Engineering, Carnegie Mellon University Favorite areas: Natural language processing, autoML, and interpretable AI Favorite researchers: Christopher...

Read More

Heroes of NLP

October 13th, 2020 | Community

Heroes of NLP is a video interview series featuring Andrew Ng, the founder of DeepLearning.AI, in conversation with thought leaders in NLP.   Watch Andrew lead an enlightening discourse around how these industry and academic...

Read More

Breaking Into AI: Juggling Work, Projects, and Personal Life With Kennedy Wangari

September 14th, 2020 | Community

Kennedy Kamande Wangari got his first taste of AI just two years ago in Kenya. Since then, he has been sprinting towards a top-tier career by taking numerous online courses, working entry-level jobs, volunteering to grow his local AI community, and considering a startup. Next step: Earning a graduate degree. Kennedy shares lessons he learned from starting out at a breakneck pace and explains how he balances professional obligations with personal life.

Read More

Working AI: Building Bespoke Models With Jade Abbott

September 9th, 2020 | Community

Jade Abbott turned a childhood desire for a robotic best friend into a career training computers to understand human language. Having studied AI in school, she got her first job coding conventional software, but she found ways to apply machine learning to her work until that became central to her role. In the meantime, she founded an open source project to train NLP models on African languages. She spoke with us about her fascination with language, the importance of community, and how to incorporate wine into your learning practice.

Read More

Event Ambassador Spotlight: Adrián Munguía

September 8th, 2020 | Community

Adrián Munguía spent almost two decades working to create AI-powered products in key science and engineering roles at Silicon Valley startups and Fortune 500 corporations globally. In 2019, he founded AI MEXICO with an aim to educate AI professionals and create AI solutions for companies.

Read More